

LA-UR-18-23011

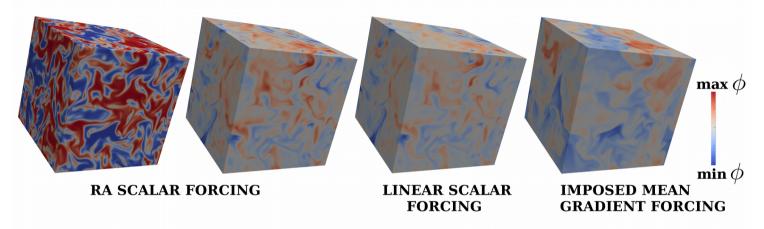
Approved for public release; distribution is unlimited.

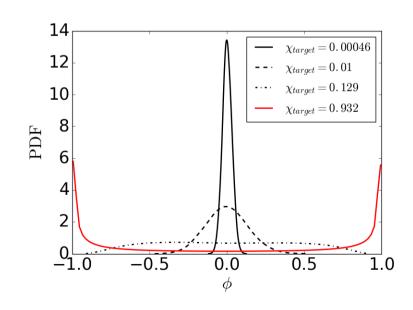
A novel reaction-analogy (RA) based scalar forcing method for direct numerical simulations of turbulence. Title:

Author(s): Daniel, Don

Livescu, Daniel

Report Intended for:


Issued: 2018-04-09


HPC Institutional Computing Report Slide Project: w17_tvt Don Daniel, Daniel Livescu

A novel reaction-analogy (RA) based scalar forcing method for Direct Numerical Simulations of turbulence.

Highlights

- 1) First method capable of generating statistically steady non-Gaussian scalar turbulence (see right) along with ensuring that scalar fields remain bounded.
- 2) Figure above, 3D scalar fields produced by RA and current methods. RA method can either produce a large amount of pure states (red, blue) or a large amount of mixed states (white) depending on the dissipation rate. Classical methods such as linear scalar and imposed mean gradient always produce a large amount of mixed states.
- 3) Figure right, RA method produces different statistically stationary scalar probability density functions (PDF) based on a specified dissipation rate. For example, a dissipation of 0.932 produces a double-delta PDF (red line) while a dissipation of 0.00046 produces a stretched exponential (solid black line).

